Percepció tàctil

Cristina Díaz Berciano

P08/10504/02582
Cap part d'aquesta publicació, inclosa el disseny general i la coberta, no pot ser copiada, reproduïda, emmagatzemada o transmesa de cap manera ni per cap mitjà, tant si és elèctric com químic, mecànic, òptic, de gravació, de fotocòpia o per altres mètodes, sense l'autorització prèvia per escrit dels titulars del copyright.
Índex

Introducció.............................................................. 5

Objectius................................................................. 6

1. L'estímul per al tacte............................................. 7

2. Descripció anatòmicofuncional del sistema tàctil humà:
   de la pell al cervell............................................. 8
   2.1. Receptors ...................................................... 8
       2.1.1. Corpuscles .................................................. 9
       2.1.2. Terminacions nervioses lliures ....................... 9
   2.2. Vies i respostes neurals .................................... 10

3. Percepció de la pressió.......................................... 16

4. Percepció de la temperatura................................. 18

5. Percepció de la vibració........................................ 19

6. L’adaptació.......................................................... 20

7. Percepció hàptica i tacte actiu............................... 21

8. Percepció del dolor.............................................. 24
   8.1. Estímuls i receptors del dolor ............................. 24
   8.2. Llindars, intensitat i adaptació al dolor ............... 25
   8.3. Analgèisia i opiacis endògens ............................ 27

9. Relacions entre la percepció visual i la percepció tàctil.... 29

10. Què hauríeu de saber........................................... 30

Exercicis d’autoavaluació........................................... 31

Solucionari............................................................... 32

Glossari............................................................... 33

Bibliografia............................................................ 34
Introducció

La pell conté per tot el cos un gran nombre de receptors sensorials que aporten una enorme quantitat d’informació. Podem considerar que és l’òrgan sensorial de més gran extensió. Encara que no hi solem donar prou transcendència, l’experiència tàctil és bàsica en les nostres vides.

En moltes ocasions quotidianes, la vista i l’oïda són insuficients per a obtenir informació vital sobre les propietats dels objectes i per a evitar lesions.

Així, per exemple, de vegades necessitem tocar un objecte per tal de determinar amb més exactitud la seva textura o el seu pes, o fins i tot, per a identificar-lo. D’altra banda, imagineu què suposaria no experimentar sensació de dolor davant d’un estímul nociu, per exemple, una superfície a temperatura molt alta. En aquest cas, no retiraríem la mà que és sobre aquesta superfície fins que no tinguéssim informació d’altres sentits (una cremada visible, l’olor a cremat, etc.), amb la qual cosa els danys serien molt pitjors.

En definitiva, el sentit del tacte és el sentit que possibilita que puguem percebre determinades qualitats dels objectes, com ara la duresa, la suavitat, la temperatura o la forma, així com el dolor que un estímul ens provoca.
Objectius

Els objectius d'aquest mòdul són:

1. Delimitar ell tipus d'estímul a què responen els nostres receptors tàctils, i descriure les vies nervioses que formen aquest sistema.

2. Discriminar entre els diferents tipus de sensacions experimentades.

3. Relacionar la percepció visual amb la percepció tàctil.
1. L'estímul per al tacte

Els estímul del tacte són aquells que deformen la pell o mouen els pèls que conté (Alpern, Lawrence i Wolsk, 1967/1984). Un canvi respecte a la temperatura de la pell, provoca percepció de la temperatura.

El sistema que respon preferentment als estímul que provoquen la sensació de pressió, temperatura, vibració i dolor és el sistema somatoestèsic, en el qual també s'inclou la propriocepció, o sentit de la posició dels membres del cos, i la cinestèsia, o sentit del moviment. En el primer cas hi estan implicats els exteroceptors, i en els dos últims els proprioceptors (Lillo, 1993). En aquest mòdul ens centrem en els primers. Noteu que som capaços d'indicar ara mateix en quina posició tenim la nostra cama dreta, i si s'està movent o no, sense necessitat de mirar-la. Imagineu què suposaria la incapacitat per sentir a través de la pell: no només perdriem molta informació sobre els objectes que ens envolten, sobre la comunicació interpersonal, etc., sinó que, a més, aquest estat ens suposaria un perill, ja que té una important funció adaptativa de protecció de l'organisme. Existeixen persones que manifesten una incapacitat de percebre sensacions tàctils o doloroses que estan constantment patint cops, cremades i fractures (Wall i Melzack, 1994).
2. Descripció anatòmicofuncional del sistema tàctil humà: de la pell al cervell

La pell té la funció d'aïllar l'organisme dels elements externs, així com de retener els òrgans i fluids. Però una altra funció fonamental és captar informació sobre els estímulos que hi contacten, ja que és l'òrgan que té un grau d'exposició més gran a l'exterior. A més, la pell és l'òrgan més pesat i el que està més al descobert. Existeixen dos tipus de pell:

- **Pell pilosa**: amb borrissol, és la de més gran extensió.
- **Pell sense pèl**: sense borrissol, i es troba a les mans, als peus i a altres parts del cos.

A la pell podem diferenciar dues capes, sota de les quals trobem cèl·lules greixoses:

- **L'epidermis**: és la capa exterior, formada per diverses capes de cèl·lules mortes.
- **La dermis**: és la capa interior. Les seves cèl·lules es divideixen constantment, i són l'origen de les cèl·lules mortes de l'epidermis.

![Estructura anatòmica de la pell amb els principals tipus de corpuscles.](image)

2.1. Receptors

Els receptors nerviosos que capten l'estimulació que es produeix sobre la pell poden classificar-se en corpuscles i terminacions nervioses.
2.1.1. Corpuscles

Els corpuscles són cèl·lules amb petites càpsules o bonys a les dendrites (vegeu la figura 1) que són particularment sensibles als estímuls del tacte. Existeixen diversos tipus de corpuscles:

- **Corpuscles de Pacini**: és el mecanoreceptor més estudiat. Es troba a la pell, els músculs, els tendons i les articulacions, i és extremadament sensible. És una càpsula formada per diverses capes, com una ceba, que envolta una fibra nerviosa i se situa en localitzacions profundes de la pell. Responen, principalment, a la pressió i la vibració.

- **Corpuscles de Meissner**: són cèl·lules planes apilades, amb una fibra nerviosa que les travessa, i estan localitzades a la dermis, especialment en àrees de gran sensibilitat.

- **Receptors o discos de Merkel**: tenen forma de disc i estan situats en el límit entre la dermis i l'epidermis. Són, fonamentalment, receptors de pressió.

- **Corpuscles de Ruffini**: són un grup de fibres molt ramificades que es troben dins d'una càpsula. Es relacionen amb la sensació de calor.

- **Corpuscles de Krause**: estan localitzats a nivell profund i són similars als corpuscles de Pacini, però són una mica més petits i simples. Les seves dendrites es troben encapsulades en una espècie de bulb. Estan estretament relacionats amb la sensació de fred.

2.1.2. Terminacions nervioses lliures

Es localitzen en el greix subcutani. S'associen amb fibres de dolor i amb la temperatura (vegeu la figura 1). Determinades zones de pell sense pèl tenen una capa molt espessa de cèl·lules mortes que conté terminacions lliures, de manera que estan protegides, però aporten gran sensibilitat.

En aquests receptors hi ha un cert grau d' especialització i, encara que la resposta de les fibres és relativament específica, ja que s'hi observa una resposta màxima davant d'estímul concrets (Lillo, 1993), no hi ha una correlació total entre la classe de receptor i la sensació experimentada. Més aviat sembla que, com postula la "teoria del patró", les sensacions es codifiquen en el patró de resposta d'un grup de fibres (per exemple, Sinclair, 1955).

Hi ha dues grans classes de receptors del tacte (i la cinestèsia), segons els canvis que es produeixen en el seu potencial durant una deformació duradora:
• **Receptors d'adaptació ràpida:** és el cas del corpuscle de Pacini i els receptors relacionats amb el desplaçament dels pèls. Es produeix una ràfega d'activació en aparèixer l'estímul, i una ràpida adaptació o disminució de l'excitació elèctrica, encara que l'estímul no desaparegui.

• **Receptors d'adaptació lenta:** receptors en els quals l'adaptació es produeix lentament, de manera que responen mentre roman present l'estímul, sense que s'observi disminució en l'activació. Són freqüents en el sistema cinestètic, la qual cosa permet que es pugui assenyalar la posició estable d'una articulació.

Els receptors es distribueixen de manera desigual per la pell, i es concentren en determinades zones, com ara a la punta dels dits. A més, el seu llindar és, comparativament, 100 milions o 10 mil milions més gran que els llindars de visió i d'audició, la qual cosa evita un excés d'estimulació (vegeu la figura 5).

### 2.2. Vies i respostes neurals

La classificació de les vies neurals implicades en el sistema somatoestètic és extremadament complexa. La connexió i organització de receptors i vies neurals depèn del tipus de fibra nerviosa i del lloc del còrtex somatoestètic en el qual acaba la via. D'altra banda, les diferents classes de fibra nerviosa porten al còrtex diferent tipus d'informació.

Les fibres nervioses poden classificar-se en funció de:

- La classe d'estímul a què responen preferentment: mecànic, de temperatura o nociu (dolor).
- El tipus d'adaptació a aquests estímulis: lenta o ràpida.
- La longitud dels seus camps receptors: llargs o curts. Aquests camps tenen la mateixa disposició que els de la visió, ja que, com en aquesta modalitat sensorial, els camps receptors se superposen.

A la pell que no té pèl hi ha quatre classes diferents de fibres que responen a l'estimulació mecànica:

- Fibres amb camps receptors petits, ben definits, que s'hi adapten ràpidament.
- Fibres amb camps receptors petits, ben definits, que s'hi adapten lentament.
- Fibres amb grans camps receptors mal definits que s'hi adapten amb ràpidesa.
- Fibres amb grans camps receptors mal definits que s'hi adapten amb lentitud.
Les fibres que tenen camps receptors petits i s’hi adapten lentament responen bé als detalls (Johnson i Lamb, 1981), mentre que aquelles que tenen camps receptors grans i s’hi adapten ràpidament, responen bé als canvis.

L’experiència sensorial es pot produir en estimular un sol canal, encara que la percepció resultant ve determinada per l’activitat dels quatre canals conjuntament, ja que cada un respon a una característica diferent de l’estímul (Greenspan i Bolanowski, 1996).

Depenent de la zona de la pell a la qual es trobi el receptor, la informació arribarà a un punt o un altre del cervell. Tota la informació passa per la medul·la espinal a través de 31 parells de nervis, i quatre nervis cranials (trigemin, oftàlmic, maxilar i mandibular) envien la informació cutània al cervell.

Representació dels nuclis dels parells o nervis cranials.

Les entrades conflueixen en dues vies principals, anatònicament diferenciades, que sembla que porten classes d’informació diferents. Aquestes vies són:

- **Via centrolemniscal**: Conté fibres nervioses grans que transmeten informació ràpidament i que reben entrades de fibres llargues mielinitzades de conducció ràpida que comencen en els corpuscles de la pell. La via asciendeix pel mateix costat de la medul·la espinal fins a la tija cerebral, on la majoria de les fibres es dirigeixen al costat oposat (o contralateral). La via

(1) Neurona que està connectada als receptors de manera més directa.
Percepció tàctil continua fins al tàlem i el còrtex. Les seves fibres responen al tacte, encara que hi ha alguna informació sobre temperatura (Hensel, 1981). Aquesta via codifica informació sobre la intensitat i localització d’estímul tàctils, i també sobre els seus aspectes temporals, és a dir sobre els canvis, per la qual cosa resulta molt útil per al tacte actiu. Cada neurona de primer ordre\(^1\) rep informació d’una petita part de la superfície corporal (camp receptor) que es reté a nivell talàmic i cortical. La capacitat per a diferenciar entre dos punts molt pròxims en una regió de pell molt sensible és possible gràcies a l’elevat nombre de superposicions que hi ha en aquests camps receptors.

- **Via espinotalàmica**: Aquesta via està formada per multimàd de fibres curtes i respon a estímul tàctils, dolorosos i tàctils. Els seus camps receptors són més grans que els de la via centrolemniscal, per la qual cosa codifica la qualitat més que la informació espacial. Afecta (en funció d’algunes variables, com ara la temperatura) el funcionament dels sistemes circulatori, digestiu i hormonal. Aquesta via té dues branques:
  - **Via paleoespinotalàmica**: principalment condueix informació sobre dolor lleuger o d’una cremada.
  - **Via neoespinotalàmica**: especialitzada en dolor de punxada.

Les fibres d’aquest sistema ascendeixen pel costat contralateral a l’estimulació externa de la medul·la espinal i es projecten a diverses àrees del cervell, principalment al tàlem i al sistema límbic, i d’aquí es dirigeixen al còrtex). Sobretot porten informació sobre estimulació nociva, encara que també aporten alguna informació sobre temperatura i tacte.

![Representació gràfica de les via centrolemniscal i espinotalàmica implicades en el sistema tàctil.](image-url)
El sistema centrolemniscal produeix una primera sensació dolorosa ben localitzada i punxant, i el sistema espinotalàmic genera un dolor posterior "sord", més difús.

En molts casos, les neurones del còrtex somatoestèsic estan organitzades de manera complexa, de manera similar a com ho estan les del còrtex visual.

El còrtex somatoestèsic conté dues zones (Burton i Sinclair, 1996), l’àrea receptora primària (S1) i l’àrea receptora secundària (S2). S1 posseeix diferents capes identificables (Kaas, 1983), de manera que les neurones talàmiques projecten principalment a una o dues capes de S1, depenent de la zona de la qual provinguin. Al seu torn, les neurones de S1 projecten S2 (Turman, Morley i Rowe, 1998).
A l’estimulació d’una zona concreta de la pell hi correspon l’activació d’una zona concreta del còrtex, per la qual cosa es pot afirmar que existeix una representació o mapa de les diferents zones del cos al còrtex (homuncle). Penfield i Rasmussen (1950) van determinar aquest mapatge estimulant diferents zones del còrtex somatoestèsic i preguntant als pacients a quin lloc del cos havien experimentat una sensació.

Hi ha determinades zones de la pell que, comparades amb d’altres, estan representades per àrees molt grans del cervell, la qual cosa els permet detectar els detalls amb gran precisió.
Percepció tàctil

Organització somatotòpica del còrtex somatosensorial primari. La quantitat de còrtex dedicat a les mans i a la cara és molt més gran que la dedicada a la resta del cos.

Curiosament, el mapa pot canviar si l'entrada sensorial d'alguna zona de la pell es perd permanentment, fins i tot en la maduresa (Pons et al., 1991). D'altra banda, la sobre-estimulació contínua d'una zona de la pell, produeix un increment de la regió del còrtex corresponent.

Exemple

Els músics que toquen instruments de corda tenen una representació cortical més gran del que és habitual en els dits de la seva mà esquerra (Elbert i cols., 1995).

Aquest mapa, a més, està disposat en columnes, i cada una processa una zona concreta del cos. A més, no només existeix un mapa del cos, sinó que n'hi ha uns quantos de diversos, i aquesta informació repetida, està referida a diferents característiques de l'estímul (Kandel i Jessell, 1991).

Tant en el tàlem com en el còrtex existeixen cèl·lules amb camps receptors centre (on) -perifèria (off) i viceversa, que responen a estímul simple, però, en el còrtex també hi ha cèl·lules que responen a estímul concrets més comple- xos. D'aquesta forma, hi ha neurones que només responen quan els receptors són estimulats per vores o estímul que es desplaçen en una direcció concreta (Hyvarinin i Poranen, 1978).
3. Percepció de la pressió

Diferents regions del cos varien en la seva sensibilitat respecte a la pressió. L'estimulació necessària per tal que es produeixi una resposta davant de la pressió és un canvi brusc en la tensió de la pell, i en les investigacions s'utilitzen estímuls com una vara o un pèl aplicat sobre la pell exercint diferents nivells de força.

En la figura 1, es mostren els llindars de pressió obtinguts per Weinstein (1968) en funció de la part del cos estimulada. Com es pot observar, aquests són molt alts per a zones de la pell de gran agudesa tàctil (per exemple, els dits de les mans i dels peus), la qual cosa mostra que sensibilitat i agudesa no són necessàriament equivalents.

En diferents punts d’un membre del cos (per exemple, els braços o les cames) hi pot haver moltes variacions respecte a la sensibilitat. La facultat per a ubicar un estímul tàctil està relacionada amb la mida de la representació neural. És a dir, la nostra capacitat per a localitzar una sensació de tacte amb precisió es relaciona amb la mida de l’àrea de representació neural corresponent, ja que, com més gran sigui, menys probabilitat d’error hi haurà.

El llindar de dos punts\(^2\) (vegeu la figura 6) va ser obtingut per Weinstein (1968), i va servir per trobar sensibilitat a la part inferior de la cara, i a les mans i els peus (Craig i Johnson, 2000). La baixa convergència i l’alta proximitat entre receptors estan relacionades amb una agudesa tàctil més gran, i tenen com a resultat camps receptius petits. Les zones amb més agudesa tàctil corresponen a àrees més grans del còrtex somatoestèsic (Penfield i Rasmussen, 1950).
Percepció tàctil

A. Llindars absoluts obtinguts per Weinstein (1968) en homes. Els valors més alts indiquen menor sensibilitat.

B. Llindars de dos punts obtinguts per Weinstein (1968) en barons.

Font: Elaboració pròpia de l’autora a partir de les dades de Weinstein (1968)

Les zones amb més agudesa tàctil corresponen a àrees més grans del còrtex somatoestèsic.
4. Percepció de la temperatura

La nostra pell mostra una gran sensibilitat als canvis de temperatura; fins i tot som capaços de detectar canvis inferiors a una centena de grau per segon. La sensació precisa dependrà, principalment, de la direcció del canvi, més que de la temperatura concreta. Els augmented de temperatura produeixen sensació de calor, i les baixades, de fred. La sensació tèrmica ve donada pel contacte amb objectes que tenen temperatures diferents de les de la pell, i considerem que la temperatura de la pell és el "zero fisiològic", i s'utilitza com a referència, encara que no és una referència concreta, perquè depèn de la zona del cos.

Hi ha un nivell de temperatures properes a aquesta que es perceben com a neutres, de manera que si, dins d'aquest nivell, varien prou a poc a poc, no s'experimentarà cap sensació tèrmica (Sherrick i Cholewiak, 1986).

Els nervis sensorials contenen fibres que alteren la seva taxa de descàrrega només si es produeix un canvi de temperatura, sense que responguin a l'estimulació mecànica (Duclaux i Kenshalo, 1980). Però també hi ha nervis que augmenten o disminueixen aquesta taxa únicament si la temperatura és dins dels límits normals, per la qual cosa es parla d'un sistema de doble codificació nerviosa. Els investigadors han identificat "fibres calentes" i "fibres fredes" que responen a l'augment i disminució de temperatura respectivament, de manera que la seva activació roman constant mentre roman fixa la temperatura (Duclaux i Kenshalo, 1980).
5. Percepció de la vibració

És més fàcil detectar un estimul de tacte vibratori que un d’estàtic. De fet, utilitzem la “vibració” en els nostres telefons mòbils com una important ajuda per a advertir les trucades i localitzar l’aparell, ja que de vegades el nostre sistema auditiu no és capaç de detectar el so, i el telèfon estàtic en una de les nostres butxacas no és un estimul prou intens en aquell moment com per ubicar-lo de manera precisa. El llindar absolut depèn de la freqüència de la vibració, i el nivell sensible de la pell és de 40 a 2500 hertzs (Hz: cicles/segon). La sensibilitat màxima es troba en el nivell de 200 a 400 Hz.

En el cas de la pell sense pèl, trobem quatre tipus de receptors amb quatre sistemes (o canals), les propietats psicofísiques dels quals són diferents:

- **Sistema pacinià** (corpuscles de Pacini i els seus nervis): més sensible a vibracions d’alta freqüència, al voltant de 250 Hz.

- **Tres sistemes no pacinians** (NP1, NP2 i NP3) que responen preferentment a nivells més baixos.

Com podem veure en la Taula 1, cada tipus de mecanoreceptor respon millor un interval determinat de freqüències temporals d’estimulació mecànica (Bolanowski, Gescheider i Verrillo, 1994).

<table>
<thead>
<tr>
<th>Tipus de receptor</th>
<th>Nivell de freqüències temporals</th>
<th>Experiència perceptiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merkel</td>
<td>0,3-3 Hz</td>
<td>Pressió</td>
</tr>
<tr>
<td>Meissner</td>
<td>3-40 Hz</td>
<td>Vibració</td>
</tr>
<tr>
<td>Ruffini</td>
<td>15-400 Hz</td>
<td>Estirada</td>
</tr>
<tr>
<td>Pacini</td>
<td>10-500 Hz</td>
<td>Vibració</td>
</tr>
</tbody>
</table>

Certs factors, com la temperatura, modulen la percepció d’un estimul vibratori. Així, per exemple, el fred eleva el llindar del tacte a la llengua en el cas de freqüències de vibració intermèdies (Green, 1987). En el cas de la pell sense pèl, aquest efecte només s’esdevé a partir de 100 Hz, i en el de la pell pilosa s’arriba a observar per a qualsevol freqüència (Verrillo i Bolanowski, 1986). A la magnitud de la sensació d’un estimul vibratori de 60 Hz a la gemma dels dits hi correspon una funció potencial amb un exponent de 0,95 (Stevens, 1959). A la mà, a la pell sense pèl hi correspon un exponent de 0,70, i per a la pilosa 1,05.
6. L’adaptació

L’adaptació consisteix a deixar de respondre o reduir la resposta davant d’una estimulació que s’allarga en el temps. Part de l’adaptació ve determinada per la forma en la qual es veu modulada la resposta per les característiques dels receptors implicats (Lillo, 1993).

Zigler, el 1932, ja va estudiar l’adaptació del tacte de diverses regions del cos, i va trobar que, com a norma general, com més pesat i petit sigui l’estímul (és a dir, que ocupi poca superfície de pell), més lentament desapareixerà la sensació. A més d’això, segons Sherrick i Cholewiak (1986), l’adaptació és més fàcil amb estímuls continuos que amb estímuls intermitents.

Frey i Goldman (1915) van demostrar en un estudi que l’adaptació a un estímul és molt ràpida durant el primer segon, i després es redueix gradualment. La tècnica que van utilitzar consistia a demanar al subjecte que ajustés la intensitat d’un estímul que se li presentava fins que la sensació produïda s’igualés amb l’experimentada davant d’un altre estímul a què el cos s’havia adaptat durant cert temps, i llavors registraven la diferència entre les seves intensitats.

Bekesy (1959) també va utilitzar aquesta tècnica, però per a mesurar el temps d’adaptació per a estímuls vibratori, que ja hem indicat que requereixen més temps d’adaptació que els estímuls estàtics. Per exemple, presentant l’estímul al llavi, l’adaptació és completa als 20 segons, mentre que a l’avantbraç ho és als 60 segons.
7. Percepció tàctil i tacte actiu

Es parla de **tacte passiu** quan una persona rep inactivament l'estimulació que una altra li administra. També es poden notar els canvis que es produeixen en la nostra pell si ens movem en relació a superfícies amb textura. S'observen variacions en la sensibilitat a l'aspresa, de manera que és més gran als llavis, als dits i a l'avantbraç, i més petita en els talons, l'esquena i les cuixes. L'aspresa es percep de la mateixa manera tant si es mou la superfície, com si ho fan les parts del cos corresponents (Heller, 1989). El tacte i la vista són igualment sensibles a l'hora de distingir superfícies aspres, però el tacte és més exacte quan la tasca consisteix a diferenciar la textura més llisa (Heller, 1989).

Si la persona controla l'estímul, tocant-lo o agafant-lo, parlem de tacte actiu i de percepció hàptica, que és un tipus de tacte molt més informatiu que el passiu. La combinació de sensacions tàctils i cinestèsiques ens permet percebre objectes, i aquestes experiències juguen un paper bàsic en l'etapa de desenvolupament perceptiu quan un nen manipula els objectes i compara la informació tàctil i visual. A més, també és de gran utilitat quan la informació visual és pobra.

Solem associar el tacte passiu amb la sensació que experimentem, i el tacte actiu amb el reconeixement d'un objecte (Kruger, 1970). El tacte permet diferenciar i reconèixer objectes complexos, i tendeix a respondre a certs aspectes diferencials dels objectes millor que el sistema visual (Klatzky, Lederman i Reed, 1987).

Els éssers humans tenim una gran sensibilitat a l'hora de distingir longituds utilitzant la percepció hàptica. Per exemple, el llindar diferencial per a objectes amb longituds d'entre 10 i 20 mm és aproximadament 1 mm, i la fracció de Weber és de 0.05 a 0.10, i és encara més petita per a objectes més llargs.

També utilitzem altres característiques a l'hora d'identificar objectes mitjançant el tacte, com ara la textura, la duresa o la percepció de la curvatura d'un objecte.

Lederman i Klatzky (1987, 1990) van observar que les persones utilitzen una sèrie de moviments distintius per a explorar els objectes, i que els moviments realitzats depenen de la informació que es vol obtenir. A aquests moviments els van anomenar "procediments d'exploració":
Alguns exemples de procediments d'exploració constatats per Lederman i Klatzky (1987)

A) Moviment lateral: utilitzat fonamentalment per a jutjar la textura.
B) Seguiment del contorn: utilitzat per a jutjar la forma global.
C) Cèrcol: judici sobre forma exacta.
D) Pressió: judici sobre la duresa.

Segons Klatzky i Lederman (1987), les característiques dels objectes de les quals podem extreure informació mitjançant el tacte són les següents:

- Les que es refereixen a la seva substància: temperatura, duresa, textura i pes.
- Les que es relacionen amb la disposició de les seves superfícies: pes, forma global, forma concreta i mida.
- Les que tenen veure amb la seva funció.

Aquests autors van sol·licitar als seus subjectes experimentals que escollissin, d'entre tres objectes, el que més s'assemblava a un quart objecte en una determinada característica (textura, pes, etc.).

Van obtenir una alta correlació entre les estratègies exploratòries previstes com a més adequades i les que van ser utilitzades pels subjectes.

Per tal que la percepció hàptica es realitzi correctament, cal la coordinació del sistema sensorial, motor i cognitiu:

- **Sistema sensorial**: fonamental per a detectar les sensacions cutànies (tacte, temperatura i textura) i per a controlar moviments i posicions dels dits i les mans.
- **Sistema motor**: necessari per a realitzar moviments dels dits i les mans.
- **Sistema cognitiu**: sense ell no seria possible processar la informació rebuda dels dos anteriors.

Quan manipulem un objecte, el cervell rep contínuament informació que va canviar, ja que els dits es van movent i l'estimulació va canviar. Algunes neuronies del còrtex somestèsic només responen quan la persona agafa de forma activa un objecte (Sakata i Iwamura, 1978), i la resposta, a més, és més gran si el subjecte para atenció a les seves accions (Hsiao, Johnson, Twombly, i DiCarlo, 1996).
Finalment, hem d’assenyalar que els anomenats dibuixos hàptics (tridimensionals) són molt difícilment recognoscibles, probablement perquè contenen molta menys informació que un objecte real (textura, pes, duresa, etc.).
8. Percepció del dolor

La sensació de dolor indica un possible dany corporal i ve acompanyat d'emocions, i en els humans també de pensaments.

En la percepció del dolor, s'identifiquen vies fisiològiques determinades i independents, i àrees de projecció específiques en el cervell. El sistema de percepció del dolor es comporta com un sistema sensorial propi i es considera una modalitat sensorial única (Coren, Ward i Enns, 1999/2001), encara que es tracta d'una experiència multimodal, ja que es poden descriure diversos tipus de dolors, tant pel que fa al seu aspecte sensorial com al seu aspecte emocional (Melzack, 1999).

8.1. Estímuls i receptors del dolor

El fet que un animal pugui identificar i evitar situacions que poden danyar el seu organisme és fonamental per a la seva supervivència. Si no es reconeixen els estímuls potencialment nocius, l'organisme pot morir. Per exemple, en els animals que sofreixen una lesió que anul·la la sensibilitat cutànja en una zona del seu cos, es donen casos d'automutilació d'aquesta zona, a causa d'aquest dèficit sensorial. Una de les formes d'estudiar els mecanismes i processos sensors implicats en la percepció del dolor és estudiar la simptomatologia de les persones que tenen alterada la seva capacitat per a experimentar dolor.

L'altra funció del dolor és indicar a l'animal el lloc en el qual s'ha de tractar una lesió. Hi ha situacions en les quals resulta més adaptatiu no experimentar dolor fins a cert temps després, ja que pot convenir fugir o lluitar per tal de salvar la vida. A més, durant la recuperació, el dolor suscita la immobilitat per tal de propiciar la curació i la cicatrització.

Els nocireceptors són els receptors de la pell responsables de la percepció del dolor i s'activen amb pressió elevada, temperatures extremes i agents químics abrasius.

Els senyals que emeten ascendeixen per la via espinotalàmica i arriben a l'hipotàlem, sistema límbic i tàlem (Chapman, 1995). Al seu torn, aquestes àrees es projecten a diferents zones del còrtex, com ara S1 i S2, l'illa i el còrtex cingolat anterior (Price, 2000). Aquest últim està associat a sentiments negatius (Rainville, Duncan, Price, Carrier, i Bushnell, 1997). Determinades neuromes del tàlem i el còrtex només es disparen davant d'estimuls danyosos (Casey, 1978; Willis, 1985).
Les terminacions nervioses lliures que es troben en el greix subcutani estan associades amb fibres nervioses referides al dolor. La seva profunda localització fa que responguin només a estimuls molt intensos, tant mecànics o com de temperatura. També existeixen altres fibres que parteen de l’epidermis i que estan enredades en una beina, per la qual cosa un llindar bastant alt.

Existeixen almenys tres tipus de fibres nervioses:

- **Fibres mielinitzades grans** (Aβ): sensibles principalment a estimuls de tacte lleugers, i especialitzades en discriminació. Aquestes vies transmeten impulsos neurals ràpidament (40 m/segon).

- **Fibres mielinitzades petites** (Aδ): responen, principalment, a estimuls mecànics nocius. La transmissió és més lenta (5 a 20 m/segon) i els seus llindars són més alts.

- **Fibres no mielinitzades petites** (C): són sensibles a qualsevol tipus d’estimuls nocius (nocireceptores polimodals), la seva transmissió és molt lenta (menys de 2.5 m/segon) i els seus llindars són els més alts dels tres. Acaben en terminacions nervioses lliures en el greix subcutani de la pell o, més profundament, en músculs i articulacions.

La primera experiència de dolor és aguda (resposta de les fibres Aδ, més ràpides) i va seguida d’una segona experiència sorda (respostes de les fibres C, més lentes). La manera en la qual hi ha disposades les vies del dolor produeix fenòmens com el **dolor doble**, que consisteix en l’experiència de dues crestes de dolor que diferencien en qualitat i temps, encara que provenen d’un sol estimul.

### 8.2. Llindars, intensitat i adaptació al dolor

Hi ha **punts de dolor** (vegeu la taula 2), que corresponen als camps receptius de les fibres de dolor. Hardy, Wolff i Goodell (1943) van construir un aparell, que van anomenar dolorímetre, que ocupava un feix de llum projectat al front per provocar dolor en els subjectes experimentals. A través d’aquest mètode, van demostrar que els llindars de dolor, igual que passa en altres sensacions, són relativament estables, si ho són les condicions, però es produeixen variacions amb canvis en l’estat neurològic, farmacològic, psicològic, i social del subjecte.

<table>
<thead>
<tr>
<th>Zona de la pell</th>
<th>Punts de dolor/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punta del nas</td>
<td>44</td>
</tr>
<tr>
<td>Planta dels peus</td>
<td>48</td>
</tr>
<tr>
<td>Gemma del dit polze</td>
<td>60</td>
</tr>
</tbody>
</table>
Percepció tàctil

<table>
<thead>
<tr>
<th>Zona de la pell</th>
<th>Punts de dolor/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuir cabellut</td>
<td>144</td>
</tr>
<tr>
<td>Parpelles</td>
<td>172</td>
</tr>
<tr>
<td>Natges</td>
<td>180</td>
</tr>
<tr>
<td>Front</td>
<td>184</td>
</tr>
<tr>
<td>Dors de la mà</td>
<td>188</td>
</tr>
<tr>
<td>Part interna de l’avantbraç</td>
<td>203</td>
</tr>
<tr>
<td>Omòplats</td>
<td>212</td>
</tr>
<tr>
<td>Part interna del colze</td>
<td>224</td>
</tr>
<tr>
<td>Regió del coll</td>
<td>228</td>
</tr>
<tr>
<td>Part posterior del genoll</td>
<td>232</td>
</tr>
</tbody>
</table>

A més, existeix un llindar diferencial per al dolor, mesurat per Hardy, Wolf i Goodell (1947). Aquests van trobar que la fracció de Weber roman constant al voltant de 0.04 (gran sensibilitat) i només hi ha un augment dràstic per a altes intensitats. Hardy i els seus col·laboradors (1947) van crear la primera escala d’intensitat del dolor (anomenada escala dol) sumant "daps" (diferències amb prou feines perceptibles), i la van fonamentar en la distinció d’estímul.

Així, per exemple, s’ha obtingut que les estimacions de magnitud del dolor produïdes per descàrregues elèctriques s’ajusten a una funció potencial amb un exponent entre 2 i 3,5 (és l’exponent més gran de la funció potencial). Aquest exponent varia en funció del tipus d’estímul de dolor i fins i tot del context social.

Un altre efecte observat és que l’experiència de dolor de diversos estíuls pot sumar-se per a experimentar una sensació de dolor més gran (per exemple, Brown, Beeler, Kloka i Fields, 1985).

També s’observa certa adaptació al dolor, per exemple, al dolor per calor, que serà més gran com menys dolorós sigui l’estímul (Hardy, Stolwijk i Hoffman, 1968). Si l’estímul és molt aversiu, no hi ha adaptació.

A causa que l’experiència de dolor es troba modulada per influències centrals (factors cognitius, motivacionals o atencionals) i estíuls tàctils (com fregar la pell), Melzack i Wall, (1965, 1988) van formular la "teoria del control de portes", que defensa que, quan són actives les fibres de diàmetre gran (fibres G), que porten informació sobre estíuls tàctils no dolorosos, o quan s’envien senyals des de l’executiu central, el dolor s’inhibeix (Light, 1992; Willis, 1983, 1985). El dolor es produeix quan les cèl·lules T es disparen a una taxa prou alta. Hi ha una porta a la medul·la espinal que està controlada per fibres sensorials de conducció ràpida i lenta, i per estíuls que procedeixen de nivells superiors (factors cognitius, motivacionals, factors atencionals i altres estíuls...
externs). D’aquesta manera, aquests factors podrien ser responsables de controlar la porta mitjançant la via que descendeix del cervell a la porta de la medul·la espinal.

Aquestes vies descendents semblen tenir una estreta relació amb l’analgèisia causada per opiacis endògens (Watkins i Mayer, 1982).

Les investigacions han demostrat que els circuits neuronals són realment més complexes que els proposats per aquesta teoria, encara que a alguns autors els continua semblant vàlida.

### 8.3. Analgèisia i opiacis endògens

Existeixen una sèrie de substàncies **analgèsiques** i **anestèsiques** que reduïxen o eliminien el dolor.

No només les substàncies químiques externes aconsegueixen reduir el dolor, sinó que a més hi ha **opiacis endògens** interactuant també amb receptors específics en el cervell, i modulant la intensitat del dolor percebuda. Existeixen almenys dos tipus de químics que són generats internament, anomenats **encefalines** i **endorfines**, i tenen efecte analgèsic (Millan, 1986). A més, es poden administrar mitjançant una injecció, a fi d’aconseguir efectes més potents. La seva acció és semblant a la de l’opi, la qual cosa es demostra amb el fet que el seu efecte es bloquegi també mitjançant la naloxona.

A més, l’estress produït, per exemple, pel coneixement de la propera aparició d’un estimul dolorós, produeix efectes analgètics (Willer, Dehen i Cambier, 1981). També s’ha comprovat en les dones que, en les dues últimes setmanes d’embaràs, tenen un augment dels llindars de dolor (Cogan i Spinnato, 1986).

L’efecte anomenat "analgèisia produïda per estimulació" (APE), que es produïx quan s’estimula elèctricament una zona del cervell, és més potent quan s’estimulen els centres d’alliberament d’endorfines i disminueix en injectar naloxona. Aquesta també atenua l’efecte dels placebos (Goldstein, 2002/2006).

La cognició té una gran influència en la percepció del dolor, tal com mostren els efectes següents:

- **Expectatives**: la ingesta d’un placebo, si els pacients creuen que conté un analgèsic, alleugereix dolors patològics (Weisenberg, 1977).

- **Desviació de l’atenció**: la utilització de realitat virtual redueix el dolor de pacients cremats (Robbins, 2000).

---

**Nota**

Els efectes d’un placebo (una substància innòcua que les persones que la consumeixen pensen que és un a substància activa) poden explicar-se mitjançant els opiacis endògens.
- **Contingut de la distracció emocional**: el dolor disminueix en mostrar a subjectes homes experimentals imatges classificades com a positives (esports i dones atractives) (DeWied i Verbaten, 2001).

- **Diferències individuals**: depenent de la cultura a què pertanyi una persona, tolera graus més grans o més petits de dolor. Per exemple, els nepalesos mostren llindars més alts que els occidentals (Clark i Clark, 1980). També els atletes toleren millor el dolor que les persones que no ho són (Hall i Davies, 1991).

- **Modelatge**: si un observador veu les reaccions que produeixen en una persona una sèrie de descàrregues elèctriques, la seva reacció fisiològica davant la possibilitat d'aquestes descàrregues canviarà (Craig i Prkachin, 1978).
9. Relacions entre la percepció visual i la percepció tàctil

Existeix una destacable similitud entre el sistema somatoestèsic i el visual. Tant la pell com la retina contenen diferents tipus de receptors, així com una organització en camps receptors.

Es pot observar la relació existent entre la percepció hàptica\(^{(12)}\) i la visió a través de diversos fenòmens:

- La capacitat de reconeixement d'un objecte mitjançant percepció hàptica (Gibson, 1966).

- L'existència de determinats patrons tridimensionals que provoquen il·lusions en ser explorats amb el tacte, igual que els seus equivalents bidimensionals en fer-ho amb la vista (per exemple, Day, 1990).

- Les persones poden ajudar-se mitjançant l'exploració hàptica per assistir la visió quan algun aspecte de l'objecte és difícil de jutjar. Així, per exemple, quan en una botiga de roba ens decidim per una peça de vestir, no només jutgem el color i la seva factura, i seleccionem la talla, sinó que a més palpem el teixit, i aquesta serà una de les claus de la nostra decisió.

\(^{(12)}\)Percepció en la qual s'utilitzen les mans per a explorar o examinar objectes tridimensionals.
10. Què hauríeu de saber

Els punts més importants que hauríeu de recordar són, en primer lloc, els tipus d'estímul a què respon el sistema somatoestètic i les funcions que compleix aquest tipus d'informació. També és important recordar les classes de receptors (segons la seva morfologia i la seva especialització), de fibres i de respostes neurals (segons sensibilitat, tipus de camp receptor i adaptació als estímulos).

Un altre punt clau són les característiques del mapatge somatoestètic, incloent el concepte de llindars i sensibilitat i la seva relació amb les diferents regions corporals. Així mateix, és fonamental que conegueu les característiques diferencials de la percepció de la pressió, la temperatura, la vibració i el dolor.

Com a punts bàsics, també hem d'afegir-hi les propietats de l'adaptació a un estímul tàctic i les diferències entre tacte actiu i passiu, el funcionament de la percepció hàptica i la seva relació amb altres sistemes.

Respecte a la percepció del dolor, els punts més rellevants són les funcions de la percepció del dolor, la descripció dels receptors i les fibres neurals que tenen implicacions en la percepció del dolor, els factors que modulen l'experiència de dolor, i el paper dels opiacis endògens en l'experiència de dolor.

Finalment, caldrà conèixer bé les relacions entre percepció visual i tàctic.
Exercicis d'autoavaluació

Preguntes de solució múltiple

1. Al mapa trobat al córtex somatoestèsic, l'àrea concreta del córtex que correspon a cada zona del cos, és proporcional a la seva mida real.
   a) Vertader
   b) Fals

2. Som més sensibles als estímulis de tacte vibratoris que als estàtics.
   a) Vertader
   b) Fals

3. Les fibres que responen millor als detalls són...
   a) les que tenen camps receptors petits i s'adapten ràpidament.
   b) les que tenen camps receptors petits i s'adapten lentament.
   c) les que tenen camps receptors grans i s'adapten ràpidament.

4. El fenomen del dolor doble es refereix al fet que en l'experiència de dolor...
   a) dos estímuls nocius produeixen una experiència de dolor tan intensa com la suma d'aquests dos estímulis separatament.
   b) determinats factors cognitius fan que, davant d'un mateix estímul, s'experimenti, en determinats moments, un dolor amb el doble d'intensitat.
   c) s'experimenten dos moments de dolor que es diferencien en qualitat encara que provin guin d'un sol estimul.

Preguntes de resposta oberta

5. Les dues grans vies neurals en les quals conflueix la informació referida al tacte són: centrolemniscal i .................

6. Els diferents tipus de característiques dels objectes de què podem obtenir informació a través del tacte actiu són les referides a la seva substància, a la disposició de les seves superfícies i a la seva .................

7. Esmenteu (i argumenteu) els actors de la cognició que influeixen en la percepció del dolor.

8. Fenòmens que posen de manifest la relació entre el sistema somatoestèsic i el sistema visual.

9. Amb quin tipus d'experiència s'associen les terminacions nervioses lliures?

10. Quin és l'efecte de la sobreestimulació d'una zona concreta de la pell?
Solucionari

Exercicis d'autoavaluació

1. b
2. a
3. b
4. c
5. espinotalàmica.
6. funció.
7. Consulteu l'apartat 8.3 ("Analgésia i opiacis endògens").
8. Consulteu l'apartat 9: "Relacions entre la percepció visual i la percepció tàctil".
10. L'augment de l'extensió de la zona corresponent del còrtex.
Glossari

**analgèsic** *m* Agent o substància que disminueix el dolor, sense perdre la sensibilitat.

**anestèsic •a** *adj* Dit de l’agent o substància que té la propietat de suspendre la sensibilitat. Pot ser local (que actua sobre una part del cos) o general (fa perdre la consciència).

**dolor doble** *m* Consisteix en l’experiència de dues crestes de dolor que es diferencien en qualitat i temps, encara que provenen d’un sol estímul.

**encefalina** *f* Pèptid (petita proteïna) amb acció analgèssica i amb una vida mitjana a la sang més curta que la de les endorfines.

**endorfines** *f* Pèptid (petita proteïna) que deriva d’un precursor produït en la hipòfisi i que actua com a analgèsic.

**llindar de dos punts** *m* Permet determinar la distància necessària entre dos estímul per tal que es puguin percebre com dos tocs que són considerats pel subjecte com a independents.

**naloxona** *f* Fàrmac antagonista dels receptors opioides, i que per tant s’utilitza en casos d’intoxicació per opioides.

**neurona de primer ordre** *f* Neurona que està connectada als receptors de manera més directa.

**nivel sensible** *m* Nivell de valors del paràmetre que representa aquesta dimensió en els estímul que són detectats per l’èsser humà.

**opiaci endogen** *m* Opiaci produït pel cervell que actua com a analgèsic. Els opiacis endòmens són coneguts com a opioids.

**percepció hàptica** *f* Percepció en la qual s’utilitzen les mans per a explorar o examinar objectes tridimensionals.

**punt de dolor** *m* Petit punt específic a la pell que responen de manera selectiva al dolor, amb un llindar de dolor més baix que d’altres.
Bibliografia

Bibliografia recomanada


Referències bibliogràfiques


